点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:极速快3 - 极速快3
首页>文化频道>要闻>正文

极速快3 - 极速快3

来源:极速快32023-12-22 17:48

  

极速快3

“一个VIP账号只能登录一台手机”,视频平台规定合理吗******

  中新网1月11日电(中新财经记者 吴涛)近日,“优酷更改会员登录规则”登上微博热搜。有网友称,用户权益较此前“缩水”。但优酷方面称,优酷VIP会员协议早有明确规定。

  这样的规定是否合理?

优酷微博截图。

  一个账号只能登录一台手机?

  针对部分用户关心的优酷账号登录问题,优酷近日回应称,优酷VIP协议规定,用户账号最多可同时登录3台设备,其中包含:手机端App1个、Pad端App1个、电视端3个、电脑客户端1个、网页端1个、车载端1个、其他端1个。优酷VIP用户同一时间可在2台设备观看,酷喵VIP用户同一时间可在3台设备观看。

  这意味着,一个优酷VIP会员账号只能登录一台手机。

  优酷表示,作出这样的规定是“为保护用户账号安全,打击黑灰产,并且考虑到绝大多数用户的使用习惯”。

  不过,很多网友并不买账,纷纷“吐槽”,“一家三人追剧,难道还要开三个会员?”“把心思多用在创新上。”“一家人一起追剧算什么黑色产业链啊。”

  不同平台账号可登录几台手机?

  记者查询多个长视频平台发现,目前多数在线视频服务商未对用户进行“一个会员账号只能登录一台手机”的限制。

  腾讯视频系列会员服务协议显示,同一个账号最多可以在五个设备,“设备”指包括但不限于手机端、电脑端、平板电脑端、网页端和电视端等终端设备,同一时间内同一账号最多在两个设备上登录及使用。

  爱奇艺VIP会员服务协议规定,同一个VIP会员账号最多可登录的终端上限为5个,其中分设备限制为:手机端App 2个、Pad端App 1个、电脑端客户端1个、网页端1个、电视端2个、VR端1个、车载端1个,智能家居端1个。

  芒果TV会员服务协议规定,同一个帐号最多可以在四个设备(“设备”指包括但不限于计算机及移动电话、平板电脑等手持移动终端设备)上使用,支持移动端、电脑端同时两台在线,电视端同时两台在线,且同一时间内同一帐号最多在两个设备上使用。

  B站大会员服务协议则没有限制登录大会员设备的个数,只是规定用户不得采取出售、转让、盗用、租赁其他用户账户等方式进行大会员注册或通过出售、转让、盗用、转借、租赁其他大会员账户等方式享用大会员。

  限制登录设备数量合理吗?

  那么,优酷对VIP会员账号限制登录设备数量是否有法律依据?

  北京云嘉律师事务所律师赵占领对中新财经表示,视频网站通过协议约定及技术方式对于用户VIP会员账号进行限制,这本身并不违规。

优酷VIP会员服务协议截图。

  值得注意的是,记者发现,优酷VIP会员服务协议及酷喵会员服务协议都进行了更新,两份协议的最新版本生效时间均为2022年12月20日。

  有消息援引优酷客服的话称,“一个优酷VIP会员只能登录一台手机”的规则变更时间是2022年12月20日,原因是"系统更新"。

  赵占领指出,视频网站一般会在用户协议中约定,平台制定的规则也是协议的组成部分,网站对于平台规则或协议内容进行变更时应通过邮件、网站公式等方式告知,用户若不同意修改则应退出使用平台服务,若继续使用则视为同意这种变更。

  不过,也有报道注意到,视频账号的使用确实存在“黑灰产”问题。

  《北京日报》的报道显示,存在聚合平台售卖低价视频账号的情况。亦有业内人士透露,其背后存在多个有组织的个人或团伙使用群控手机等手段,注册账户、批量购买会员,并在第三方平台上进行倒卖、拆卖的情况。

  有业内人士认为,优酷此举确实可能在一定程度上限制视频账号“黑灰产”问题,但同时也会影响用户亲友间免费账号的共享。

  对此,你怎么看?(完)

  搜索

复制

                                                                                                                • 科学家成功合成铹的第14个同位素******

                                                                                                                    超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

                                                                                                                    超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。

                                                                                                                    近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。

                                                                                                                    此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。

                                                                                                                    不断进行探索,再次合成铹同位素

                                                                                                                    铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。

                                                                                                                    质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。

                                                                                                                    103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。

                                                                                                                    截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。

                                                                                                                    目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。

                                                                                                                    通过熔合反应,形成新的原子核

                                                                                                                    铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。

                                                                                                                    “仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。

                                                                                                                    在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。

                                                                                                                    “如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。

                                                                                                                    超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。

                                                                                                                    拓展新的领域,推动超重核理论研究

                                                                                                                    由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。

                                                                                                                    此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。

                                                                                                                    研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。

                                                                                                                    “此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)

                                                                                                                    (文图:赵筱尘 巫邓炎)

                                                                                                                  [责编:天天中]
                                                                                                                  阅读剩余全文(

                                                                                                                  相关阅读

                                                                                                                  推荐阅读
                                                                                                                  极速快3评刘强东事件:我们的本能和常识也许都过时了
                                                                                                                  2023-08-15
                                                                                                                  极速快3王思聪质押大连合兴投资157.2万股股权
                                                                                                                  2023-10-18
                                                                                                                  极速快3清华博士培养“不唯论文”为高校改革作表率
                                                                                                                  2024-02-29
                                                                                                                  极速快3早安我的少年:有温度的生活伴侣
                                                                                                                  2023-11-09
                                                                                                                  极速快3凯迪拉克ATS-L优惠10万元
                                                                                                                  2023-10-19
                                                                                                                  极速快3伊朗外长:伊朗考虑退出《不扩散核武器条约》
                                                                                                                  2024-03-29
                                                                                                                  极速快3习近平会见奥地利总理
                                                                                                                  2023-07-18
                                                                                                                  极速快3 摄影师镜头下的北京,刚柔并济,恬淡悠远
                                                                                                                  2023-12-16
                                                                                                                  极速快3不读书就焦虑的日子,真的该结束了
                                                                                                                  2024-03-06
                                                                                                                  极速快3你不知道的日本文化史
                                                                                                                  2023-06-29
                                                                                                                  极速快3收评:创业板指下行跌2.55% 近300只股跌停
                                                                                                                  2023-10-23
                                                                                                                  极速快3 无线充电开发较早 有线快充却后来居上
                                                                                                                  2024-01-10
                                                                                                                  极速快3《流浪地球2》里行星发动机造得了吗?专家解答
                                                                                                                  2023-12-14
                                                                                                                  极速快3 幸福小二居都市栖息地
                                                                                                                  2024-02-25
                                                                                                                  极速快3盲目追捧九价HPV疫苗,结局可能两相其害
                                                                                                                  2024-03-16
                                                                                                                  极速快3 涨70%!通胀来袭,降准触底!房价该何去何从?
                                                                                                                  2023-09-28
                                                                                                                  极速快3丰田全新雷凌配置曝光推四款车型
                                                                                                                  2024-01-29
                                                                                                                  极速快3 市场需求倒逼光伏行业升级 汉能不怕“倒春寒”
                                                                                                                  2023-06-24
                                                                                                                  极速快3“春风”送岗位 援助暖人心
                                                                                                                  2024-03-14
                                                                                                                  极速快3董藩:我不主张在收缩型城市搞振兴
                                                                                                                  2023-06-16
                                                                                                                  极速快3驻丹麦大使邓英将离任 曾任外交部礼宾司副司长
                                                                                                                  2023-06-03
                                                                                                                  极速快3张扬对话丨北京时间是怎样“生产”出来的?
                                                                                                                  2023-06-12
                                                                                                                  极速快3京网文【2017】10231-1151号
                                                                                                                  2024-04-16
                                                                                                                  极速快3女子遛狗变身“低头族” 一脚踩空掉入下水道
                                                                                                                  2023-07-22
                                                                                                                  加载更多
                                                                                                                  极速快3地图